3.36 \(\int \frac{\csc (e+f x) \sqrt{a+a \sin (e+f x)}}{\sqrt{c+d \sin (e+f x)}} \, dx\)

Optimal. Leaf size=61 \[ -\frac{2 \sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{c} \cos (e+f x)}{\sqrt{a \sin (e+f x)+a} \sqrt{c+d \sin (e+f x)}}\right )}{\sqrt{c} f} \]

[Out]

(-2*Sqrt[a]*ArcTanh[(Sqrt[a]*Sqrt[c]*Cos[e + f*x])/(Sqrt[a + a*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])])/(Sqrt
[c]*f)

________________________________________________________________________________________

Rubi [A]  time = 0.188052, antiderivative size = 61, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.057, Rules used = {2943, 206} \[ -\frac{2 \sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{c} \cos (e+f x)}{\sqrt{a \sin (e+f x)+a} \sqrt{c+d \sin (e+f x)}}\right )}{\sqrt{c} f} \]

Antiderivative was successfully verified.

[In]

Int[(Csc[e + f*x]*Sqrt[a + a*Sin[e + f*x]])/Sqrt[c + d*Sin[e + f*x]],x]

[Out]

(-2*Sqrt[a]*ArcTanh[(Sqrt[a]*Sqrt[c]*Cos[e + f*x])/(Sqrt[a + a*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])])/(Sqrt
[c]*f)

Rule 2943

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/(sin[(e_.) + (f_.)*(x_)]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x
_)]]), x_Symbol] :> Dist[(-2*a)/f, Subst[Int[1/(1 - a*c*x^2), x], x, Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sq
rt[c + d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[
b*c + a*d, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\csc (e+f x) \sqrt{a+a \sin (e+f x)}}{\sqrt{c+d \sin (e+f x)}} \, dx &=-\frac{(2 a) \operatorname{Subst}\left (\int \frac{1}{1-a c x^2} \, dx,x,\frac{\cos (e+f x)}{\sqrt{a+a \sin (e+f x)} \sqrt{c+d \sin (e+f x)}}\right )}{f}\\ &=-\frac{2 \sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{c} \cos (e+f x)}{\sqrt{a+a \sin (e+f x)} \sqrt{c+d \sin (e+f x)}}\right )}{\sqrt{c} f}\\ \end{align*}

Mathematica [C]  time = 1.82408, size = 367, normalized size = 6.02 \[ -\frac{\sqrt{a (\sin (e+f x)+1)} \left (\cos \left (\frac{1}{2} (e+f x)\right )-i \sin \left (\frac{1}{2} (e+f x)\right )\right ) \left (\log \left (-\frac{(1+i) e^{\frac{i e}{2}} f \left (-2 i \sqrt{c} \sqrt{2 c e^{i (e+f x)}-i d \left (-1+e^{2 i (e+f x)}\right )}+\sqrt{2} c \left (-1+e^{i (e+f x)}\right )+i \sqrt{2} d \left (1+e^{i (e+f x)}\right )\right )}{\sqrt{c} \left (1+e^{i (e+f x)}\right )}\right )+\log \left (\frac{(1+i) e^{\frac{i e}{2}} f \left (2 \sqrt{c} \sqrt{2 c e^{i (e+f x)}-i d \left (-1+e^{2 i (e+f x)}\right )}+\sqrt{2} c \left (1+e^{i (e+f x)}\right )-i \sqrt{2} d \left (-1+e^{i (e+f x)}\right )\right )}{\sqrt{c} \left (-1+e^{i (e+f x)}\right )}\right )\right ) \sqrt{(\cos (e+f x)+i \sin (e+f x)) (c+d \sin (e+f x))}}{\sqrt{c} f \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right ) \sqrt{c+d \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Csc[e + f*x]*Sqrt[a + a*Sin[e + f*x]])/Sqrt[c + d*Sin[e + f*x]],x]

[Out]

-(((Log[((-1 - I)*E^((I/2)*e)*(Sqrt[2]*c*(-1 + E^(I*(e + f*x))) + I*Sqrt[2]*d*(1 + E^(I*(e + f*x))) - (2*I)*Sq
rt[c]*Sqrt[2*c*E^(I*(e + f*x)) - I*d*(-1 + E^((2*I)*(e + f*x)))])*f)/(Sqrt[c]*(1 + E^(I*(e + f*x))))] + Log[((
1 + I)*E^((I/2)*e)*((-I)*Sqrt[2]*d*(-1 + E^(I*(e + f*x))) + Sqrt[2]*c*(1 + E^(I*(e + f*x))) + 2*Sqrt[c]*Sqrt[2
*c*E^(I*(e + f*x)) - I*d*(-1 + E^((2*I)*(e + f*x)))])*f)/(Sqrt[c]*(-1 + E^(I*(e + f*x))))])*(Cos[(e + f*x)/2]
- I*Sin[(e + f*x)/2])*Sqrt[a*(1 + Sin[e + f*x])]*Sqrt[(Cos[e + f*x] + I*Sin[e + f*x])*(c + d*Sin[e + f*x])])/(
Sqrt[c]*f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*Sqrt[c + d*Sin[e + f*x]]))

________________________________________________________________________________________

Maple [B]  time = 0.371, size = 238, normalized size = 3.9 \begin{align*}{\frac{\sqrt{2} \left ( -1+\cos \left ( fx+e \right ) \right ) }{f\sin \left ( fx+e \right ) \left ( -1+\cos \left ( fx+e \right ) -\sin \left ( fx+e \right ) \right ) }\sqrt{a \left ( 1+\sin \left ( fx+e \right ) \right ) }\sqrt{c+d\sin \left ( fx+e \right ) } \left ( \ln \left ( -{\frac{1}{\sin \left ( fx+e \right ) } \left ( -\sqrt{c}\sqrt{2}\sqrt{{\frac{c+d\sin \left ( fx+e \right ) }{\cos \left ( fx+e \right ) +1}}}\sin \left ( fx+e \right ) +c\cos \left ( fx+e \right ) -d\sin \left ( fx+e \right ) -c \right ){\frac{1}{\sqrt{c}}}} \right ) -\ln \left ( 2\,{\frac{1}{-1+\cos \left ( fx+e \right ) } \left ( -\sqrt{c}\sqrt{2}\sqrt{{\frac{c+d\sin \left ( fx+e \right ) }{\cos \left ( fx+e \right ) +1}}}\sin \left ( fx+e \right ) +d\cos \left ( fx+e \right ) -c\sin \left ( fx+e \right ) -d \right ) } \right ) \right ){\frac{1}{\sqrt{c}}}{\frac{1}{\sqrt{{\frac{c+d\sin \left ( fx+e \right ) }{\cos \left ( fx+e \right ) +1}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^(1/2)/sin(f*x+e)/(c+d*sin(f*x+e))^(1/2),x)

[Out]

1/f/c^(1/2)*(a*(1+sin(f*x+e)))^(1/2)*(c+d*sin(f*x+e))^(1/2)*2^(1/2)*(ln(-1/c^(1/2)*(-c^(1/2)*2^(1/2)*((c+d*sin
(f*x+e))/(cos(f*x+e)+1))^(1/2)*sin(f*x+e)+c*cos(f*x+e)-d*sin(f*x+e)-c)/sin(f*x+e))-ln(2*(-c^(1/2)*2^(1/2)*((c+
d*sin(f*x+e))/(cos(f*x+e)+1))^(1/2)*sin(f*x+e)+d*cos(f*x+e)-c*sin(f*x+e)-d)/(-1+cos(f*x+e))))*(-1+cos(f*x+e))/
sin(f*x+e)/(-1+cos(f*x+e)-sin(f*x+e))/((c+d*sin(f*x+e))/(cos(f*x+e)+1))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a \sin \left (f x + e\right ) + a}}{\sqrt{d \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(1/2)/sin(f*x+e)/(c+d*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a*sin(f*x + e) + a)/(sqrt(d*sin(f*x + e) + c)*sin(f*x + e)), x)

________________________________________________________________________________________

Fricas [B]  time = 3.86625, size = 2439, normalized size = 39.98 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(1/2)/sin(f*x+e)/(c+d*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

[1/4*sqrt(a/c)*log(((a*c^4 - 28*a*c^3*d + 70*a*c^2*d^2 - 28*a*c*d^3 + a*d^4)*cos(f*x + e)^5 + a*c^4 + 4*a*c^3*
d + 6*a*c^2*d^2 + 4*a*c*d^3 + a*d^4 - (31*a*c^4 - 196*a*c^3*d + 154*a*c^2*d^2 - 4*a*c*d^3 - a*d^4)*cos(f*x + e
)^4 - 2*(81*a*c^4 - 252*a*c^3*d + 150*a*c^2*d^2 - 28*a*c*d^3 + a*d^4)*cos(f*x + e)^3 + 2*(79*a*c^4 - 100*a*c^3
*d + 74*a*c^2*d^2 - 4*a*c*d^3 - a*d^4)*cos(f*x + e)^2 - 8*((c^4 - 7*c^3*d + 7*c^2*d^2 - c*d^3)*cos(f*x + e)^4
+ 51*c^4 - 59*c^3*d + 17*c^2*d^2 - c*d^3 - 2*(5*c^4 - 14*c^3*d + 5*c^2*d^2)*cos(f*x + e)^3 - 2*(18*c^4 - 33*c^
3*d + 12*c^2*d^2 - c*d^3)*cos(f*x + e)^2 + 2*(13*c^4 - 14*c^3*d + 5*c^2*d^2)*cos(f*x + e) - (51*c^4 - 59*c^3*d
 + 17*c^2*d^2 - c*d^3 - (c^4 - 7*c^3*d + 7*c^2*d^2 - c*d^3)*cos(f*x + e)^3 - (11*c^4 - 35*c^3*d + 17*c^2*d^2 -
 c*d^3)*cos(f*x + e)^2 + (25*c^4 - 31*c^3*d + 7*c^2*d^2 - c*d^3)*cos(f*x + e))*sin(f*x + e))*sqrt(a*sin(f*x +
e) + a)*sqrt(d*sin(f*x + e) + c)*sqrt(a/c) + (289*a*c^4 - 476*a*c^3*d + 230*a*c^2*d^2 - 28*a*c*d^3 + a*d^4)*co
s(f*x + e) + (a*c^4 + 4*a*c^3*d + 6*a*c^2*d^2 + 4*a*c*d^3 + a*d^4 + (a*c^4 - 28*a*c^3*d + 70*a*c^2*d^2 - 28*a*
c*d^3 + a*d^4)*cos(f*x + e)^4 + 32*(a*c^4 - 7*a*c^3*d + 7*a*c^2*d^2 - a*c*d^3)*cos(f*x + e)^3 - 2*(65*a*c^4 -
140*a*c^3*d + 38*a*c^2*d^2 - 12*a*c*d^3 + a*d^4)*cos(f*x + e)^2 - 32*(9*a*c^4 - 15*a*c^3*d + 7*a*c^2*d^2 - a*c
*d^3)*cos(f*x + e))*sin(f*x + e))/(cos(f*x + e)^5 + cos(f*x + e)^4 - 2*cos(f*x + e)^3 - 2*cos(f*x + e)^2 + (co
s(f*x + e)^4 - 2*cos(f*x + e)^2 + 1)*sin(f*x + e) + cos(f*x + e) + 1))/f, 1/2*sqrt(-a/c)*arctan(-1/4*((c^2 - 6
*c*d + d^2)*cos(f*x + e)^2 - 9*c^2 + 6*c*d - d^2 + 8*(c^2 - c*d)*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(d
*sin(f*x + e) + c)*sqrt(-a/c)/((a*c*d - a*d^2)*cos(f*x + e)^3 - (a*c^2 - 3*a*c*d)*cos(f*x + e)*sin(f*x + e) +
(2*a*c^2 - a*c*d + a*d^2)*cos(f*x + e)))/f]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a \left (\sin{\left (e + f x \right )} + 1\right )}}{\sqrt{c + d \sin{\left (e + f x \right )}} \sin{\left (e + f x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**(1/2)/sin(f*x+e)/(c+d*sin(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(a*(sin(e + f*x) + 1))/(sqrt(c + d*sin(e + f*x))*sin(e + f*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a \sin \left (f x + e\right ) + a}}{\sqrt{d \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(1/2)/sin(f*x+e)/(c+d*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(a*sin(f*x + e) + a)/(sqrt(d*sin(f*x + e) + c)*sin(f*x + e)), x)